Multi-Resolution Spatio-Temporal Data Mining for the Study of Air Pollutant Regionalization
نویسندگان
چکیده
Spatio-temper-al data mining involves exti-acting and analyzing useful information embedded in a large spatio temporal database. Cluster analysis, one of the data mining techniques, provides the capabilip to investigate the spatio-temporal variation of data. Previous studies in cluster analysis indicate that the optimal number of clusters could be varied with the temporal scale of input data. This study employs multi-scale wavelet transforms and self-organizing map neural networks to mine air pollutant data. Experimental results show that regions determinedfrom wavelet transform approach can reduce the local small regions using a small scale input data and improve the over-smoothed regions using one large scale input data. The results of cluster analysis using data generated from discrete wavelet transform and continuous wavelet transform also discussed in this paper. Data generated from continuous wavelet transfovm provide detailed time-variation features that can be used to detect the air pollutant spatial variation in a selected time period.
منابع مشابه
Modeling and Spatio-Temporal Analysis of the Distribution of O3 in Tehran City Based on Neural Network and Spatial Analysis in GIS Environment
Air pollution is one of the most problems that people are facing today in metropolitan areas. Suspended particulates, carbon monoxide, sulfur dioxide, ozone and nitrogen dioxide are the five major pollutants of air that pose many problems to human health. The goal of this study is to propose a spatial approach for estimation and analyzing the spatial and temporal distribution of ozone based on ...
متن کاملModeling of the Relationships Between Spatio-Temporal Changes of Traffic Volume and Particulate Matter-2.5 Pollutant Concentration Based on Geographically Weighted Regression (GWR) and Inverse Distance Weighting (IDW) Model: A Case Study in Tehran M
Background and Aim: High concentrations of particulate matter-25 (PM2.5) have been the cause of the unhealthiest days in Tehran, Iran in recent years. This study was conducted with the aim of the spatio-temporal analysis of traffic volume and its relationship with PM2.5 pollutant concentrations in Tehran metropolis, Tehran during 2015-2018, using the Geographic Information System (GIS). Materi...
متن کاملReduced-Rank Spatio-Temporal Modeling of Air Pollution Concentrations in the Multi-Ethnic Study of Atherosclerosis and Air Pollution.
There is growing evidence in the epidemiologic literature of the relationship between air pollution and adverse health outcomes. Prediction of individual air pollution exposure in the Environmental Protection Agency (EPA) funded Multi-Ethnic Study of Atheroscelerosis and Air Pollution (MESA Air) study relies on a flexible spatio-temporal prediction model that integrates land-use regression with...
متن کاملMining Association Rules in Geographical Spatio-temporal Data
For the sake of environmental change monitoring, a huge amount of geospatial and temporal data have been acquired through various networks of monitoring stations. For instance, daily precipitation and air temperature are observed at meteorological stations, and MODIS images are regularly received at satellite ground stations. However, so far these massive raw data from the stations are not full...
متن کاملSpatio-temporal analysis of diurnal air temperature parameterization in Weather Stations over Iran
Diurnal air temperature modeling is a beneficial experimental and mathematical approach which can be used in many fields related to Geosciences. The modeling and spatio-temporal analysis of air Diurnal Temperature Cycle (DTC) was conducted using data obtained from 105 synoptic stations in Iran during the years 2013-2014 for the first time; the key variable for controlling the cosine term i...
متن کامل